
1

INTRODUCTION
TO TKSOLVER

Example 1 Simple Equation Solving Using TKSolver - Part A

Example 2 Simple Equation Solving Using TKSolver - Part B

Example 3 Simultaneous Equation Solving Using TKSolver

Example 4 List Solving and Plotting Using TKSolver

Example 5 List Solving and Built-in Functions Using TKSolver

Example 6 Using Rule Functions in TKSolver

Example 7 Using Procedure Functions in TKSolver

Example 8 Using List Functions in TKSolver

Example 9 Using Unit Sheets and Format Sheets in TKSolver

By Robert L. Norton P. E.

Copyright 2004

All Rights Reserved.

2 MACHINE DESIGN - An Integrated Approach

INTRODUCTION TO TKSOLVER

The TKSolver program possesses some unique features that are very useful for solution
of design problems in general and for machine-design problems in particular. These
features include the ability to backsolve for any variable by simply switching it from
an input column to an output column and then moving some other variable from out-
put to input. In addition the program will automatically invoke a root-finding algorithm
applying user-supplied guess values for the unknown parameters. It can thus solve equa-
tions in which the unknown parameters are implicit (i.e., appear more than once in the
equation). Systems of simultaneous nonlinear equations can also be solved by its root-
finding algorithm. It comes with an extensive library of prewritten functions that do
many mathematical tasks such as numerical integration, numerical solution of differ-
ential equations, etc.

Design problems typically contain more variables than we have equations for and
thus cannot be directly solved. Many assumptions (read intelligent guesses) must then
be made to obtain a trial solution from which some insight is gained into the problem.
The assumed values are then changed and the model is recalculated to obtain a better
solution. TKSolver allows this iteration process to proceed in an easy and rapid manner.

TKSolver is a member of the class of programs known as equation solvers which
typically allow the typing in of equations in a line-by-line fashion as you would do with
any programming language. Unlike programming languages and most other equation
solvers, which require the equation to be put in explicit form (i.e., the one unknown
variable isolated on the left of the equal sign and all other terms on the right side), TK
allows the equation to be input in free form. This may seem like a minor convenience
but is really quite powerful, as it allows implicit variables to be solved as described
above.

In fact, there is really no distinction between input and output variables within the
equations of a TK model. Any variable can take on either input or output characteris-
tics at different times. This is what allows “instant” back-solving. This means that you
can, for example, specify the safety factor as an input variable, assign a desired value,
and solve for any one of the part dimensions that affect the safety factor, no matter how
complicated the equations or how many times that dimension’s variable appears in the
collection of equations that define the engineering model. Once the model is calculated,
output of the data in table or graph form is simple to accomplish.

There are many more useful features of this program. Rather than list them, it will
be more productive to present a few simple examples to show what it can do. The Stu-
dent Manual included with the software provides additional instruction for, and ex-
amples of, its use. Context-sensitive, on-line help is built into the program as well.

We will create a simple design problem to use as an example and gradually increase
its complexity in succeeding examples as additional topics and features of the program
are introduced. Before presenting the examples, we must define some of the terminol-
ogy associated with this program.

Copyright: Robert L. Norton 2004 INTRODUCTION TO TKSOLVER 3

Terminology

The TKSolver program contains a number of “sheets” which can be thought of as a para-
digm for the sheets of paper that clutter the typical engineer’s desk. One of these sheets,
the rule sheet, contains the equations or “rules” that define the model. Another sheet,
the variable sheet, contains the values of the known input parameters, and, after the
rules are solved will also contain the output values. One of the advantages of TKSolver
is its clean separation of rules (equations) and variables (data). The rules can (and
should) be kept in strictly symbolic terms and the data changed on the variable sheet
to recalculate or iterate the problem.

Beneath the variable sheet (and other sheets) are additional “subsheets” that con-
tain more detailed information on each variable. These subsheets can be accessed from
a pull-down menu or with a keystroke combination which differs depending on the ver-
sion of TKSolver used.* This is referred to as “diving” down to the subsheet, as in rum-
maging beneath the papers on your desk to find that sheet with additional data on it.
When the program is first run, both the rule and variable sheets are open and visible on
the screen. Other sheets (list, function, plot, table, unit, format, and comment) are
accessible from the WINDOW pull-down menu. The use of these sheets will be intro-
duced in later examples.

Simple Models, Rule and Variable Sheets, Subsheets

We wish to design a 1-liter-capacity cooking pot, as shown in Figure 1, to be made of
1-mm-thick stainless steel. Ultimately we would like to minimize the amount of stain-
less steel used. We will start with the simplest possible model.

E X A M P L E 1

Simple Equation-Solving Using TKSolver - Part A

Problem Find the height and empty weight of an open-top, cylindrical
container (a cooking pot) for a desired volume.

Given The volume = 1 liter, inside diameter = 12 cm, wall thickness = 0.1 cm.

Assumptions The material is stainless steel with a mass density of 7.75 g/cc.

Solution See Figure 1, Tables 1 and 2, and the TKSolver file EX-01.tkw.

1 An equation for the volume of a thin-walled cylinder can be expressed as

vol basearea H a= ⋅ ()

where H is the height of the cylinder.

* In the Windows version, a
“dive” to a subsheet is done
with Alt + Enter or by
clicking the right mouse
button with the cursor on
the item to be dived into. In
the DOS version, use Shift +
> to dive down and Shift + <
to dive back up. In the
Macintosh use Command +
mouse-click. The Windows
and Macintosh versions also
provide pull-down menu
picks for opening subsheets.
These examples will refer to
the Windows versions of
these (and other) com-
mands. See your manual for
equivalents in other versions.

4 MACHINE DESIGN - An Integrated Approach

2 The area of the base can be found from

basearea
D

b=
π 2

4
()

where D is the inside diameter of the base.

3 Since we want to know the weight of the cooking pot, we need its total surface area,
which can be found from

surface basearea DH c= + π ()

4 The weight is then

surface thick dens weight d⋅ ⋅ = ()

5 These equations are encoded into the rule sheet as shown in Table 1. Though this
model is provided on disk, it will be of more value if you create this model (and
those in later examples) from scratch as described here. If you do that, you will
notice that as soon as you hit ENTER after typing each equation, the variable names in
that equation automatically appear on the variable sheet as shown in Table 2.

6 To solve the model we must provide sufficient input data to constrain it. The data
given in this example are typed into the input column of the variable sheet for vol,
thick, dens, and D. The function key F9 will solve the model, and the results should
appear in the output column beside the variables as seen in Table 2. Try it.

7 Comments may be typed into the comment column or not as you wish. They serve
the useful purpose of documenting the model, which should always be done. The
comments do not enter into the solution, however. The labels in the units column
have special meanings when used in conjunction with a units sheet. We will
introduce that powerful feature of TK in a later example. If you are typing in this
model from scratch, then it is better to leave the units labels out for now.

8 The only caution that ALWAYS applies, whether using a units sheet or not, is that
when first entering data to the variable sheet you must use only data that are defined
in a consistent unit system. We have chosen cgs units in this example. Having
made that choice we had to be consistent in using only data measured in that system,

F I G U R E 1

A Stainless Steel
Cylindrical Container
(Cooking Pot)

D

H

Table 1 TKSolver Rule Sheet for Example 1 from File EX-01.tkw

; 1- calculate the volume of the cylinder (Eq. a)

vol = basearea * H

; 2 - calculate the base area of the cylinder (Eq. b)

basearea = PI() * D^2 / 4

; 3 - calculate the total surface area of the cylinder (Eq. c)

surface = basearea + PI() * D * H

; 4 - calculate the weight of the cylinder (Eq. d)

surface * thick * dens = weight

Copyright: Robert L. Norton 2004 INTRODUCTION TO TKSOLVER 5

1 000 cm^3 volume of container

0.10 cm thickness of wall

7.75 g/cc density of material

12 cm diameter of base of cylinder

8.8 cm height of side of cylinder

113.1 cm^2 area of base

446.4 cm^2 total surface area

346 g weight of empty cylinder

Table 2

Input Variable Output Unit Comments

TKSolver Variable Sheet for Example 1 from File EX-01.tkw

St

vol

thick

dens

D

H

basearea

surface

weight

i.e., cm, g, and cc in this case. We will have a great deal of freedom to change the
units of any variable after its first entry, and with a proper units sheet, TK will
automatically convert them! But that’s getting ahead of the story. (See Example 9
for a discussion of units conversion.)

Let’s examine this model more closely. Note in Table 1 that equation (a) computes
volume as a function of the base area. But the base area is not calculated until step 2.
This arrangement of equations would not work in any conventional programming lan-
guage or in most other equation solvers. They require any variable used on the right
side of an equation to be defined numerically in advance of the execution of the equa-
tion in which it appears. All other programming languages and equation solvers are pro-
cedural solvers, meaning that they proceed linearly through a set of instructions, from
top to bottom, evaluating each expression as they go (unless redirected by control state-
ments, such as loops, if statements, etc.).

TKSolver operates differently. It is a declarative solver, which in simple terms
means that it is capable of sorting out the order in which a set of equations must be
solved and reordering them (in its “head”) to solve them (if possible) no matter in what
order you present them to it. We will see in a later example that it is possible to make
TK behave in a procedural manner when we wish to, as when controlling a loop struc-
ture to manipulate an array, for example. Thus, TK is able to figure out that it needs to
evaluate the second equation for basearea before it can solve the first equation for vol.
It does this by making multiple passes through the rule sheet until it sorts out these hi-
erarchies, and it will ultimately solve the model if enough data have been supplied to
constrain it.

Equations (b) and (c) in Table 1 use a built-in function PI() which returns the value
of π to as many significant figures as the computer is capable of carrying (typically >15).
The () are required for proper syntax and, for most functions, the () will contain one
or more arguments to be passed to the function (e.g., SIN(x)); but PI() does not need

6 MACHINE DESIGN - An Integrated Approach

an argument, since it just returns a constant. Using this function is preferable to typ-
ing 3.1416 for π, as it gives more accuracy.

Look at equation (d) in Table 1. It is written in implicit form, in that the left side
has more than one term. This is not allowed in any procedural solver or programming
language. That simple equation could easily have been written with the single term
weight on the left side, which would make it acceptable to a procedural solver. How-
ever, one often encounters complicated equations that either cannot be put into explicit
form for a particular variable or require a great deal of algebraic manipulation in order
to do so. In such instances this ability of TK to handle an implicit form is very useful.
It was done in this example only to make this point.

Switching Variables from Input to Output and Vice Versa

We now redo the previous example with a different parameter specified as the input.

E X A M P L E 2

Simple Equation Solving Using TKSolver - Part B

Problem Find the diameter and weight of an open-top, cylindrical container
(a cooking pot) for a desired volume.

Given The volume = 1 liter, inside height = 10 cm, wall thickness = 0.1 cm.

Assumptions The material is stainless steel with a mass density of 7.75 g/cc.

Solution See Figure 1, Table 3, and the TKSolver file EX-02.tkw.

1 The only difference between this example and the previous one is that we have
specified the pot’s height and asked for the diameter needed to match a given
volume. The rule sheet is thus the same as before. The model is unchanged, but we
want to solve for a different variable.

2 Using TKSolver, this becomes a trivial issue. Table 3 shows the variable sheet for
this example. Note that the value for H is now defined in the input column and the
value of D has been computed in the output column. This switch was accomplished
by simply typing the letter I (for input) in the leftmost column (labeled St for status)
opposite the variable H. The I does not show, but it pulls the value into the input
column. Then type a number 10 in the input column for H. Typing a letter O in the
St column opposite D pushes its value to the output column. We have thus switched
the status of these two variables. (Note that simply typing the number in the input
column of H will change its status to input without requiring an I in the St column.)

3 Solving the model with function key F9 gives the results shown in Table 3.

F I G U R E 1

A Stainless Steel
Cylindrical Container
(Cooking Pot)

D

H

Copyright: Robert L. Norton 2004 INTRODUCTION TO TKSOLVER 7

Note the ease with which variables can be switched from input to output status or
vice versa. This allows any variable to be solved for quickly and easily.

Using Iteration and Root Finding

We now complicate the problem by introducing a height-to-diameter ratio constraint
(H/D) which will then require an iterative root-finding solution to a set of simultaneous
equations.

E X A M P L E 3

Simultaneous Equation-Solving Using TKSolver

Problem Find the diameter, height, and weight of an open-top, cylindrical
container (a cooking pot) for a desired volume and height/diameter
ratio (H/D).

Given The volume = 1 liter, H/D = 0.6, wall thickness = 0.1 cm.

Assumptions The material is stainless steel with a mass density of 7.75 g/cc.

Solution See Figure 1, Tables 4, 5, and 6, and the TKSolver file EX-03.tkw.

1 This example introduces a new constraint to the problem posed in the previous two
examples, but is otherwise the same. Instead of specifying either the diameter or
height, we now specify the aspect ratio between those two parameters, and we want
to find some combination of height and diameter that satisfies the two constraints of
volume and aspect ratio. Define an additional rule that involves the aspect ratio.

Table 3

Input Variable Output Unit Comments

TKSolver Variable Sheet for Example 2 from File EX-02.tkw

1 000 cm^3 volume of container

0.10 cm thickness of wall

7.75 g/cc density of material

11.3 cm diameter of base of cylinder

10 cm height of side of cylinder

100 cm^2 area of base

454.5 cm^2 total surface area

352.3 g weight of empty cylinder

St

O*

I*

* These letters are not visible on the variable sheet, but change the status of the variable to input (I) or output (O).

vol

thick

dens

D

H

basearea

surface

weight

8 MACHINE DESIGN - An Integrated Approach

* For information on root-
finding algorithms, see
Numerical Recipes by Press
et al., Cambridge University
Press.

ratio
H

D
e= ()

2 Add this equation to the rule sheet as shown in Table 4 and push both H and D to the
output column by typing an O in the status column as described in the previous
example. Type the given value of 0.6 in the input column of the variable ratio.

3 Use Function key F9 to try solving the model now. You will find that it does not
solve, because there are now two unknowns, H and D. An unsolved model is
evidenced by the presence of asterisks to the left of the rules. When a rule is
satisfied, the asterisk is erased.

4 We have two equations in these two unknowns, so they can be solved simulta-
neously. Equations (a) and (b) could be combined to give one expression for volume
as f(H, D), and equation (e) expresses the ratio as f(H, D). Note that it is not
necessary to rewrite the rule sheet to algebraically combine equations (a) and (b).
The solver will “combine” them numerically.

5 To solve simultaneous, nonlinear equations it is necessary to provide guess values for
one or more variables so that the Newton-Raphson root-finding algorithm* built into
TKSolver can iterate to a solution. There are two ways to provide a guess value for
any variable in TK. If you type a G in the St column next to the variable, it will use
whatever number you type in the input column as an initial guess. If that guess is
close enough to one of the roots of the equation system, it will converge to that root.
Be aware, however, that nonlinear equations can have multiple roots, meaning that
your solution can be different for different guess values.

6 The second (and preferred) way to provide a guess value for a variable is to type it
on the variable’s subsheet. To access the subsheet, place the cursor on the line
containing the variable, pull down the WINDOW menu and select DISPLAY SUBSHEET.
(This selection has the keyboard equivalent of Alt + Enter.) Once the variable’s
subsheet is open, any desired guess value can be typed on the line so labeled. The
difference between these two methods of establishing a guess value is that a guess
placed on the variable’s subsheet will remain there through multiple solves of the

Table 4 TKSolver Rule Sheet for Example 3 from File EX-03.tkw

; 1- calculate the volume of the cylinder (Eq. a)

vol = basearea * H

; 2 - calculate the base area of the cylinder (Eq. b)

basearea = PI() * D^2 / 4

; 3 - calculate the total surface area of the cylinder (Eq. c)

surface = basearea + PI() * D * H

; 4 - calculate the weight of the cylinder (Eq. d)

surface * thick * dens = weight

; 5 - calculate the ratio of cylinder height to diameter (Eq. e)

ratio = H / D

Copyright: Robert L. Norton 2004 INTRODUCTION TO TKSOLVER 9

Table 5

Input Variable Output Unit Comments

TKSolver Variable Sheet for Example 3 - Before Solving

St

1 000 cm^3 volume of container

0.10 cm thickness of wall

7.75 g/cc density of material

0.6 height-to-diameter ratio

G 2 cm diameter of base of cylinder

cm height of side of cylinder

cm^2 area of base

cm^2 total surface area

g weight of empty cylinder

vol

thick

dens

ratio

D

H

basearea

surface

wt

1 000 cm^3 volume of container

0.10 cm thickness of wall

7.75 g/cc density of material

0.6 height-to-diameter ratio

12.9 cm diameter of base of cylinder

7.7 cm height of side of cylinder

129.7 cm^2 area of base

441 cm^2 total surface area

341.8 g weight of empty cylinder

Table 6

Input Variable Output Unit Comments

TKSolver Variable Sheet for Example 3 - After Solving

St

vol

thick

dens

ratio

D

H

basearea

surface

wt

model. But a guess value placed in the input column of the variable sheet along with
a G in the St column will convert to an output value after solving and both the G and
the guess value will have to be retyped for each subsequent solve.

7 Use either of these methods to define a guess value (the supplied example file has a
guess value of 2 on D’s subsheet) and solve the model with F9. It will automatically
iterate to the solution. Table 5 shows the variable sheet for this example with the G
shown in the St column and the guess value of 2 in the input column before solution.
Table 6 shows the same variable sheet after solution. The solver has iterated to the
simultaneous solution that satisfies the constraints on both volume and ratio to give
the values of H and D shown in the output column.

10 MACHINE DESIGN - An Integrated Approach

The previous three examples show how TKSolver can quickly solve individual or
simultaneous equations. Variables can be switched from input to output status allow-
ing a model to be solved for any parameter present in its rules without requiring any
rewriting of those rules. Iterative root finding is automatically invoked if the model
cannot be directly solved and if a sufficient number of guesses for the unknown vari-
able values have been provided, either on the variable sheet or on the variables’ sub-
sheets.

Lists, Tables, Plots, Optimization, and Built-in Functions

The next two examples introduce the use of lists (arrays) in TKSolver and show how
an optimum solution to a problem can be quickly found. Once lists of variables are
created, plots and tables of the model’s parameters can also be quickly generated.

E X A M P L E 4

List-Solving and Plotting Using TKSolver

Problem Find the height/diameter ratio and dimensions of an open-top,
cylindrical container that will minimize its weight for a given
volume. Plot the variation of weight with the height/diameter ratio.

Given Volume = 1 liter, wall thickness = 0.1 cm.

Assumptions The material is stainless steel with a mass density of 7.75 g/cc. The
ratio H/D will be varied from 0.1 to 2.0 in increments of 0.1.

Solution See Figures 1 and 2, Tables 7, 8, and 9, and the TKSolver file EX-
04.tkw.

1 There should be an optimum H/D ratio for this container that will minimize its
surface area and weight. Since the material is sold by weight, its cost will then be
minimized as well. This simple example could be optimized by writing an expres-
sion for the weight as a function of H/D ratio, differentiating it with respect to that
ratio, setting the differential equal to zero, and solving for the ratio. However, we
can also obtain a numerical approximation to that optimum ratio from the existing
TKSolver model by creating lists of variables and list solving the model for all values
in the input list.

2 A variable can be made into a list simply by typing a letter L in the status column of
that variable as shown in Table 7. The variables ratio, D, H, and weight have been so
designated.

3 At least one list must be declared as an input list and a set of input values provided to
it. The variable ratio is made to be the input list simply by the fact that it has a value
in its input column on the variable sheet. Note that all the other list variables’ values
are in the output column.

F I G U R E 1

A Stainless Steel
Cylindrical Container
(Cooking Pot)

D

H

Copyright: Robert L. Norton 2004 INTRODUCTION TO TKSOLVER 11

volume of container

thickness of wall

density of material

height-to-diameter ratio

diameter of base of cylinder

height of side of cylinder

area of base

total surface area

weight of empty cylinder

1 000

0.10

7.75

0.6

cm^3

cm

g/cc

12.9 cm

7.7 cm

129.7 cm^2

441 cm^2

341.8 g

L

L

L

L

vol

thick

dens

ratio

D

H

basearea

surface

weight

Table 7

Input Variable Output Unit Comments

TKSolver Variable Sheet for Example 4 from File EX-04.tkw

St

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

Element Value

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

TKSolver List for the
Variable ratio

Table 8
4 To put values in the input list, pull down the COMMANDS menu and select LIST FILL.

The resulting dialog box allows the desired first, last, and step values for the list to
be specified, and fills the list. To view its contents, place the cursor on the variable-
sheet line containing that variable and use Alt + Enter twice in succession to “dive”
down two levels into the sub-subsheet for that variable. This will expose the list in
its own window. The list for the variable ratio was filled by this technique with 20
values from 0.1 to 2.0 in steps of 0.1 and is shown in Table 8.

5 Use the function key F10 to do a list solve. This performs a separate solution of the
rules for each value in the input list. In this example it solved the rules 20 times.
The output lists D, H, and weight are now filled with 20 values apiece, each one
corresponding to a solution for one of the values in the input list ratio. In terms of a
conventional programming language such as BASIC, Fortran, Pascal or C, the list-
solve operation has, in effect, executed a loop which repeated the rule-sheet calcula-
tions while incrementing through all the values in the input list.

6 To see the results in convenient form, we can create an interactive table. Open the
table sheet from the WINDOW pull-down menu. Type any name you wish in the
column labeled “name.” A title for the table also can be typed in the title column if
desired, or it can be left blank. With the cursor sitting on the line in the table sheet
containing the name you just typed, “dive” (Alt + Enter) to go to the subsheet for this
table. In the subsheet column headed “List,” type the name of any list variable that
you want to put in the table. In this example, we typed ratio, D, H, and weight, each
on a new line in the List column. To display the table “dive” again using Alt + Enter.
The interactive table will now be visible in its own window and should look like
Table 9. It can be scrolled through on-screen and can be printed. Since it is an
“interactive” table, any changes typed into it will automatically change the parent
lists. For example, if you wanted to change the last value of the input list ratio from
2.0 to 3.0, typing the new value in the interactive table will have the same effect as if
you typed it directly into the list. They are “hot-linked.”

12 MACHINE DESIGN - An Integrated Approach

7 A plot of any list versus any other list (or lists) can also be quickly created. Open the
plot sheet from the WINDOWS menu. Type any name you wish in the column labeled
“name.” A title for the plot also can be typed in the title column if desired, or it can
be left blank. With the cursor sitting on the line in the plot sheet containing the name
you just typed, “dive” (Alt + Enter) to go to the subsheet for this plot. The cursor
will be on a field labeled “X-Axis List.” Type the name of the list that you want
plotted on the x axis as the independent variable. For our example this is the list
ratio. Then place the cursor on one of the fields in the column under the label “Y-
Axis” and type the name of a list that you want plotted as a dependent variable on the
y axis. For our example this could be the list weight. Use the function key F7 to
display the plot. It should look like Figure 2.

8 The optimum solution is obvious from Figure 2. The weight of the container is a
minimum at an H/D ratio of about 0.5. Table 9 shows this weight to be 340.5 g.

The preceding example shows how easy it is to obtain plots and tables of solution
data and from them determine an approximate optimum design. To do this without a
tool such as an equation solver would be tedious indeed. Even to write a custom com-
puter program in Pascal, BASIC, or C would be more time consuming than this ap-
proach. An equation solver eliminates the “programming overhead” associated with
input and output of data, table and plot generation, etc. Solutions to even simple prob-
lems like this example can be obtained in less time than with most other methods. When
the problem is more complex, an equation solver becomes an indispensable tool for the
engineer.

Using Built-in Functions

We now modify the TKSolver file from the preceding example to add the ability to ex-
tract the optimum solution values from the lists without the need for a table or plot
(though both of those displays will still be of value in visualizing the solution). In the
process, we also increase the size of the lists from their present 20 to 80 elements in order
to get a closer approximation to the optimum solution.

E X A M P L E 5

List Solving and Built-in Functions in TKSolver

Problem Find the height/diameter ratio and dimensions of an open-top,
cylindrical container that will minimize its weight for a given
volume. Plot the variation of weight with the height/diameter ratio.
Extract the optimum values from the lists of solution variables.

Given Volume = 1 liter, wall thickness = 0.1 cm.

Copyright: Robert L. Norton 2004 INTRODUCTION TO TKSOLVER 13

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

23.4

18.5

16.2

14.7

13.7

12.9

12.2

11.7

11.2

10.8

10.5

10.2

9.9

9.7

9.5

9.3

9.1

8.9

8.8

8.6

2.3

3.7

4.9

5.9

6.8

7.7

8.5

9.3

10.1

10.8

11.5

12.2

12.9

13.6

14.2

14.8

15.4

16.0

16.6

17.2

464.7

376.4

351.1

342.5

340.5

341.8

344.7

348.5

352.9

357.5

362.4

367.3

372.2

377.1

382.0

386.8

391.6

396.3

400.9

405.4

Table 9 TKSolver Interactive Table for Example 4

Element ratio D H weight

H/D ratio

w
ei

gh
t

(g
)

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
300

310

320

330

340

360

380

370

380

390

400

F I G U R E 2

Variation of Weight with Height-to-Diameter Ratio in Example F-4

14 MACHINE DESIGN - An Integrated Approach

Assumptions The material is stainless steel with a mass density of 7.75 g/cc. The
ratio H/D will be varied from 0.1 to 2.0 in increments of 0.025.

Solution See Tables 10 and 11 and the TKSolver file EX-05.tkw.

1 Fill the input list ratio with 77 elements with values from 0.1 to 2.0 in increments of
0.025. See step 4 in Example 4 for the procedure.

2 TKSolver has about 100 built-in functions to perform common mathematical
operations such as square roots, logarithms, trigonometric operations, etc. Their
syntax can be viewed with the on-line help in TKSolver, either from the HELP pull-
down menu, or by using the function key F1. We will use three of these functions in
this example to demonstrate function use in general and also to show how to extract
information from lists.

3 Table 10 shows the rule sheet for this example. Three rules have been added to those
of Example 4. At line 6, the MIN(x) function is used to return the smallest value in
the list ‘weight. The single quote in front of weight indicates that it is the name of a
list rather than a variable for which a single value exists on the variable sheet.
Equation (f) in Table 10 places the minimum value returned from this function in the
variable minwt. The variable sheet in Table 11 shows the value it returned to minwt
after solving. Note a subtlety here. A list solve (F10) must first be done in order to
fill the list ‘weight with its calculated values. Then a direct solve (F9) also must be
done to cause equation (f) to extract the minimum value from that list.

4 We now have found an approximation of the lowest weight for our design, but we
really need to know the value of the H/D ratio that is responsible for that minimum

Table 10 TKSolver Rule Sheet for Example F-5 from File EX-05.tkw

; 1- calculate the volume of the cylinder (Eq. a)

vol = basearea * H

; 2 - calculate the base area of the cylinder (Eq. b)

basearea = PI() * D^2 / 4

; 3 - calculate the total surface area of the cylinder (Eq. c)

surface = basearea + PI() * D * H

; 4 - calculate the weight of the cylinder (Eq. d)

surface * thick * dens = weight

; 5 - calculate the ratio of cylinder height to diameter (Eq. e)

ratio = H / D

; 6 - find the minimum value in the list 'weight (Eq. f)

minwt = MIN('weight)

; 7 - find the location (subscript) of the min value in the list 'weight (Eq. g)

locmin = MEMBER(minwt, 'weight)

; 8 - find the value in the list 'ratio with the subscript locmin (Eq. h)

minratio = ELEMENT('ratio, locmin)

Copyright: Robert L. Norton 2004 INTRODUCTION TO TKSOLVER 15

340.5

17

0.5

g minimum weight for ratio

array location of minwt

optimum H/D ratio for minwt

minwt

locmin

minratio

Table 11

Input Variable Output Unit Comments

TKSolver Variable Sheet for Example 5 from File EX-05.tkw

St

L

L

L

1 000

0.10

7.75

0.6

L

cm^3

cm

g/cc

cm

cm

cm^2

cm^2

g

volume of container

thickness of wall

density of material

height to diameter ratio

diameter of base of cylinder

height of side of cylinder

area of base

total surface area

weight of empty cylinder

12.9

7.7

129.7

441

341.8

vol

thick

dens

ratio

D

H

basearea

surface

weight

weight. The function MEMBER(minwt, ‘weight) at line 7 returns the location (or
subscript) in the array ‘weight of the element that has the value minwt. This value is
shown as locmin in Table 11.

5 We can now use the function ELEMENT(‘ratio, locmin) at line 8 to return the value
of ‘ratio[locmin]. This is the desired solution, i.e., the value of the H/D ratio that
will give the minimum-weight container.*

6 Compare these results with Table 9 and the plot in Figure 2.

It is worth the effort to spend a little time looking at the collection of built-in func-
tions provided with the software. Their use can save programming time. See the
TKSolver manual and its on-line help for more information.

User-Defined Functions

One of the most powerful features of TKSolver is its ability to accommodate user-de-
fined functions. Three types of user functions are available: rule functions, procedure
functions, and list functions. Each has a different purpose and set of applications. We
present an example of each in the order listed above.

RULE FUNCTIONS A rule function performs like the rule sheet but allows a set of
rules to be isolated within a callable function that has its own set of local variables. Its
local variables are isolated from those on the variable sheet. Values are passed into the
rule function as argument variables when it is called either from the rule sheet or from

* Note that this problem
could have been solved
quickly and easily for the
exact minimum weight using
the calculus. We use a less-
exact numerical method here
to show the process. A
numerical method is often
the only possible solution to
more complicated problems.

16 MACHINE DESIGN - An Integrated Approach

another function. Its computed values are passed back to the calling program as result
variables. Within a rule function, the declarative solver is in operation, so the order of
equations is not critical and implicit rules are acceptable. Anything that can be done
on a rule sheet can be done in a rule function.

PROCEDURE FUNCTIONS A procedure function is very similar to a procedure in
PASCAL or a subroutine in FORTRAN. It has local variables, input and output variables,
and is activated with a CALL statement. Its execution is procedural, meaning its state-
ments are executed in linear fashion, top to bottom, unless redirected with control state-
ments. It behaves like any procedural programming language. All its statements must
be explicit with only one variable on the left side. Its purpose is to allow looping through
lists and/or execution of control structures that are not possible within the declarative
solver environment.

LIST FUNCTIONS are table-look-up functions that allow several types of mapping
between their input and output lists, including two forms of interpolation. List func-
tions prove to be extremely useful in design problems where much information needed
for the solution is discrete in nature, such as material strengths for various alloys, or
stock sizes available for fasteners, wire, or I-beams, etc. Empirical data generated from
tests can be encoded as list functions and looked up “on-the-fly” while a model’s rules
are iterating to a solution using guess values for other continuous variables.

Rule Functions

We now modify the previous example to introduce the use of a rule function. Subse-
quent examples will use procedure and list functions as well.

E X A M P L E 6

Using Rule Functions in TKSolver

Problem Use a rule function to find the height/diameter ratio and dimensions
of an open-top, cylindrical container that will minimize its weight
for a given volume. Plot the variation of weight with height/
diameter ratio.

Given Volume = 1 liter, wall thickness = 0.1 cm.

Assumptions The material is stainless steel with a mass density of 7.75 g/cc. The
ratio H/D will be varied from 0.1 to 2.0.

Solution See Tables 12, 13, and 14 and the TKSolver file EX-06.tkw.

1 Table 12 shows the rule function cyl_rule* which was created to solve the first four
equations (a - d) in the rule sheet for Example 4. To do this, open the function sheet
from the WINDOW menu and type the desired function name (cyl_rule) in the column

Copyright: Robert L. Norton 2004 INTRODUCTION TO TKSOLVER 17

labeled “Name.” In the column labeled “Type,” put the letter R to identify it as a
rule function. A comment is optional. Dive on this line to open the actual rule
function subsheet shown in Table 12.

2 Type the desired equations into the rule function as they would appear on a rule
sheet. In fact, the equations from an existing rule sheet such as that of Example 4
can be copied to the clipboard and pasted into the rule function to save typing time.
Note in Table 12 that different variable names have been used for some of the
parameters. This is arbitrary and was done to make the point that these are local
variables, different from those on the rule sheet.

3 At the top of the rule function are three lines labeled parameter variables, argu-
ment variables, and result variables. Parameter variables have common values
among the variable sheet and all functions in which they appear. Anything in this
parameter list becomes a global variable and loses its local character. We do not
need any of these in this function, so the line is left blank.

4 Argument variables are the input variables to the rule function. Type all of the
variable names needed as input to solve the rules in the function on this line,
separated by commas. In this example, only V and ratio are required as input. (Note
that these are the only input values on the variable sheet of Table 7 that are used in
these rules.)

Table 12 TKSolver Rule Function for Example 6 from File EX-06.tkw

Rule Function cyl_rule

Comment: Calculates volume and area of cylinder

Parameter variables:

Argument variables: V, ratio

Result variables: dia, height, A
S Rule

; Rule Function to calculate surface area and volume of a cylindrical container

; to use: CALL cyl_rule (V, ratio ; dia, height , A)

ratio = height / dia

basearea = PI() * dia^2 / 4
A = basearea + PI() * dia * height
V = basearea * height

* Note that the use of the
underscore (_) in the name
of the function is NOT
required. Any word can be
used for a function name as
long as it does not contain
certain characters that have
mathematical meaning such
as +, -, etc. The underscore
is used here simply to
increase readability of the
function name. Variable and
function names in TKSolver
are “case sensitive,”
meaning that capitalization
of any letter(s) changes the
name, i.e., Cyl_rule is a
different name than cyl_rule.
This case sensitivity can
cause some consternation
when writing and debugging
models, as one’s eye may
not notice that the “same”
variable name has been
inadvertently typed in two
places with different case.
TKSolver will consider them
different variables and the
model will probably not
solve, because only one of
them has a value associated
with it on the variable sheet.
This is one of the most
common errors to check for
when your model refuses to
solve. See the TKSolver
manual for complete
information on naming
functions and variables.

Table 13 TKSolver Rule Sheet for Example 6 from File EX-06.tkw

; 1 - calculate the dimensions and area of the cylinder using the rule function "cyl_rule"

CALL cyl_rule (vol, ratio ; D, H , surface)

; 2 - calculate the weight of the cylinder

weight = surface * thick * dens

18 MACHINE DESIGN - An Integrated Approach

5 Result variables are the output from the function. Type any of the variables from
the equations in the function for which you wish to return values to the calling
program. Note that it is not necessary to put all of the equations’ variables in these
lists. Any variables not listed in one of these three lines (such as basearea in this
example) will remain as local variables known only to this rule function.

6 The comments within the rule function preceded by a semicolon* are optional and
serve to document the function. It is a good idea to document the required CALL
statement that will be used in any rule sheet or other function to activate this
function. The format of the CALL statement is as shown in Tables 12 and 13. Note
that the argument variables (inputs), separated by commas, are listed first and are
separated from the list of comma-delimited result variables with a semicolon.

7 The rule statement is now reduced to two statements as shown in Table 13. The first
is the CALL statement (without the preceding ; or “ so it will execute). Note that the
names of the variables passed to the rule function do not have to be the same as the
names used in the rule function. The variable names in the rule function are “dum-
mies,” each of which takes on the label of whatever is passed to it in the CALL
statement. The mapping between the actual and dummy variables is by their order
in the argument list, first to first, second to second, etc. In this case vol in the rule
sheet (Table 13) becomes V in the rule function (Table 12), ratio is ratio, dia
becomes D, etc. The second rule-sheet equation calculates the weight of the
cylinder. This equation could have been placed inside the rule function if desired,
which would then require thick and dens to be added to its argument list.

8 When this model is solved, it gives the same solution as in Example 4. The variable
sheet is shown in Table 14. Note that the dummy variables V, dia, height, A, and
basearea do not appear on the variable sheet. Only the global variables created in
the rule sheet appear there.

9 The principal advantage of using rule (or other) functions is to encapsulate rule sets
that may be useful in more than one program into a form that is easily transferred
from one model to another. The localization of variables inside the function means
that you can call the variables by different names in different models and still use the
same rule function. Another advantage is that of modularizing the model, which
means breaking it down into more tractable pieces that can be debugged and proven
independently of the rest of the model. The value of this approach increases as your
models get more complicated.

Procedure Functions

We will now introduce the use of procedure functions to control access to lists in the
following example.

* The semicolon is used to
denote a comment line in
the Windows and DOS
versions of TKSolver. The
Macintosh version uses a
quote (“) instead of a
semicolon for the same
purpose.

Copyright: Robert L. Norton 2004 INTRODUCTION TO TKSOLVER 19

E X A M P L E 7

Using Procedure Functions in TKSolver

Problem Create a procedure function to load the input list ratio in Example 6
so that the range of values for calculation can be defined by the user
at run time. Use the rule function cyl_rule to find the height/
diameter ratio and dimensions of an open-top, cylindrical container
that will minimize its weight for a given volume.

Given Volume = 1 liter, wall thickness = 0.1 cm.

Assumptions The material is stainless steel with a mass density of 7.75 g/cc. The
ratio H/D will be varied from 0.1 to 2.0 using 40 data points.

Solution See Tables 15, 16, and 17 and the TKSolver file EX_07.tkw.

1 The task here is to automatically fill a list with N values that start at a user-defined
minimum value (min) and end at a user-defined maximum value (max). The value of
N will be user specified as well. We cannot do this on the rule sheet or in a rule
function because the declarative solver will control the order in which the statements
are executed. We need to control a loop structure and cause the desired numbers to
be placed in the list one by one in order. This requires the sequential solving of a
procedure function.

2 To create a procedure function, open the function sheet from the WINDOW menu and
type the desired function name (here filalist) in the column labeled “Name.” In the
column labeled “Type,” put the letter P to identify it as a procedure function. A
comment is optional. Dive on this line to open the procedure-function subsheet.

3 There are two built-in functions that will help with this task. The BLANK (listname)
function blanks the list whose ‘ name is provided in the variable listname. The

cm^3

cm

g/cc

12.9 cm

7.7 cm

L

L

L

volume of container

thickness of wall

density of material

height-to-diameter ratio

diameter of base of cylinder

height of side of cylinder

1 000

0.10

7.75

0.6

441 cm^2

341.8 gL

total surface area

weight of empty cylinder

vol

thick

dens

ratio

D

H

surface

weight

Table 14

Input Variable Output Unit Comments

TKSolver Variable Sheet for Example 6 from File EX-06.tkw

St

20 MACHINE DESIGN - An Integrated Approach

Table 16 TKSolver Rule Sheet for Example 7 from File EX-07.tkw

; 1 - fill the input list called 'ratio with desired values

CALL filalist (N, min, max, 'ratio)

; 2 - calculate the area and volume of the cylinder using the rule function ;cyl_rule;

CALL cyl_rule (vol, ratio ; D, H , surface)

; 3 - calculate the weight of the cylinder

weight = surface * thick * dens

Table 15 TKSolver Procedure Function for Example 7 from File EX-07.tkw

Procedure filalist

Comment: Fills a list with range of values

Parameter Variables:

Input Variables: N,min,max,name

Output Variables:
S Statement

; N is the number of data in the list

; min is first value

; max is last value

; name is a string variable containing the name of the list

; to use: CALL filalist (N, min, max, 'listname)

; first blank the list

CALL BLANK(name)
T = min

delta = (max - min) / (N - 1)
FOR I = 1 to N

PLACE (name, I) = T

T = T + delta
NEXT I

PLACE (listname, I) = x function places the value of x in the Ith element of the list
whose ‘ name is provided on the variable sheet in the variable listname.

4 The finished procedure function is shown in Table 15. The input variables are listed
on the line with that label. Their meanings are defined in the comment lines. The
heart of this procedure is the FOR-NEXT loop which runs its index I from 1 to N and
uses I as an argument in the built-in function PLACE(name,I) = T. This statement
inserts the value of T into the Ith element of the list “name.” The value of T is
initialized to the value min and increased on each pass through the loop by delta.

Copyright: Robert L. Norton 2004 INTRODUCTION TO TKSOLVER 21

cm^3

cm

g/cc

cm

cm

cm^2

g

13.7

6.8

439.4

340.5

40

0.1

2

0.5

1 000

0.1

7.75

L

L

L

L

number of data points desired

minimum value for input list

maximum value for input list

height-to-diameter ratio

volume of container

thickness of wall

density of material

diameter of base of cylinder

height of side of cylinder

total surface area

weight of empty cylinder

N

min

max

ratio

vol

thick

dens

D

H

surface

weight

Table 17

Input Variable Output Unit Comments

TKSolver Variable Sheet for Example 7 from File EX-07.tkw

St

Delta is calculated from the values of min, max, and N. Note the similarity of this
procedure to a BASIC computer program; the loop structure is identical.

5 The rule sheet that calls the procedure is shown in Table 16. The CALL to filalist
passes the list name ‘ratio for loading with N values between min and max. This will
have the same effect as manually loading the list with the LISTFILL menu command,
but it is now automated. Open the list sheet to see that the list ‘ratio now has N
values from min to max in it after solving the model. The rest of the rule sheet is
identical to that of Example 6.

6 The variable sheet for this model is shown in Table 17. The values of N, min, and
max are the only additions to the model of Example 6 shown in Table 14.

This is a somewhat trivial example of the use of a procedure function* but it does
illustrate its ability to manipulate lists (arrays) in conventional programming fashion.
Applications of procedure functions can be found in the examples and case studies pre-
sented in this book.

List Functions

We now add to our example a list function to select the density of the material based
on the input of an alphameric code to the variable sheet. Again, this is a somewhat trivial
application of the power of list functions, but be assured that these functions have great
value in automatically selecting tabular data while calculating a model. List functions
are used extensively in this book’s examples and case studies.

* It is also a crude
implementation in that the
CALL to the procedure
filalist will be repeated
(unnecessarily) each time the
list solver performs an
execution of the rule sheet.
The only penalty in this case
is a waste of execution time.
The process could be
speeded up by using an IF
statement to limit the
execution of filalist to the
first pass through the rule
sheet only. This was not
done in this example in
order to adhere to the
principle of KISS (Keep It
Simple, Stupid!).

22 MACHINE DESIGN - An Integrated Approach

Table 19 TKSolver Rule Sheet for Example 8 from File EX-08.tkw

; 1 - fill the input list called 'ratio with desired values

CALL filalist (N, min, max, 'ratio)

; 2 - retrieve the density of the chosen material from the list function “get_rule"

dens = get_dens (material)

; 3 - calculate the dimensions and area of the cylinder using the rule function "cyl_rule"

CALL cyl_rule (vol, ratio ; D, H , surface)

; 4 - calculate the weight of the cylinder

weight = surface * thick * dens

E X A M P L E 8

Using List Functions in TKSolver

Problem Create a list function to return the density of a selected material.
Use that density value in combination with the rule function cyl_rule
to find the height/diameter ratio and dimensions of an open-top,
cylindrical container that will minimize its weight for a given volume.

Given Volume = 1 liter, wall thickness = 0.1 cm.

Assumptions The material is aluminum with a mass density of 2.77 g/cc. The
height-to-diameter ratio H/D will be varied from 0.1 to 2.0.

Solution See Tables 18, 19, and 20 and the TKSolver file EX-08.tkw.

1 A list function relates the contents of two lists. The input list is called the domain of
the function and the output list is called its range. The input value is passed to the
list function as an argument and it returns the corresponding output value.

Table 18 TKSolver List Function for Example 8 from File EX-08.tkw

List Function: get_dens

Comment: Returns the weight density of a material

Domain List: material

Mapping: Table

Range List: density
Element Domain Range

1 'alum 2.76805

2 'steel 7.75054

3 'copper 8.58096

Copyright: Robert L. Norton 2004 INTRODUCTION TO TKSOLVER 23

2 To create a list function, open the function sheet from the WINDOW menu and type
the desired function name (here get_dens) in the column labeled “Name.” In the
column labeled “Type,” put the letter L to identify it as a list function. A comment is
optional. Dive on this line to open the list-function subsheet.

3 Table 18 shows this list function. When making your own, start by typing, on the line
beside the label “Domain List,” the name of the list that you want to use as the input.
This list name can be one that already exists on the list sheet or can be a new list, still
to be filled. We called the domain list material for this example.

4 For this example we want Table mapping, which creates a one-for-one correspon-
dence between input and output variables with no interpolation. Other possible
mappings are step, linear interpolation, and cubic interpolation, See the TKSolver
on-line help for further information on these.

5 Type the name of the desired output list on the line labeled “Range List.” Here we
used the list name density.

6 If these lists have already been defined on the list sheet and filled with data, they will
immediately appear in the columns headed Domain and Range. If they have not yet
been filled, you can fill them from this sheet. Simply type the appropriate words or
numbers on each element’s line. In this simple example we want some convenient
labels for the materials in the domain list (matl) and the corresponding densities of
those materials in the range list (density). To create your list function, type the data
as shown in Table 18, using the single quote on the names to designate them as
alphanumeric data.

7 The rule sheet is shown in Table 19. At line 2, the list function is called by using it in
the assignment statement:

dens get dens material f= ()_ ()

8 Note on the variable sheet in Table 20 that the variable material is set to the value
‘alum, which is one of the labels in the list matl. When the rule (f) is evaluated, it
passes the value ‘alum to the list function get_dens, which scans its domain list for
that value. If it finds an ‘alum in its domain, it returns the corresponding value from
the range list (2.76805) and places it in the variable dens on the variable sheet. Note
that neither of the list variables matl or density that belong to the list function appears
on the variable sheet.

9 The solution then proceeds as before, using the returned value of dens which is now
an output variable.

Units and Formatting

TKSolver allows automatic unit conversions within any model that possesses a units
sheet. The units sheet must be created by the user. A fairly extensive one is supplied
on disk with this text as the file UNITMAST. A small portion of this unit sheet is shown
as Table 21. This file can be merged into any TK model by using the MERGE command
on the FILE pull-down menu. Once merged into the model, typing any of this sheet’s

24 MACHINE DESIGN - An Integrated Approach

Table 21 Part of the TKSolver Units Sheet from the File UNITMAST

From To Multiply By Add Offset Comment

lb N 4.448 2 force

N dyne 100 000 force

m cm 100 length

in cm 2.54 length

in^2 mm^2 645.162 6 area

m^2 mm^2 1 000 000 area

cm^2 mm^2 100 area

m^3 mm^3 1E+09 volume

cm^3 mm^3 1 000 volume

cm^3 cc volume

g/cc g/mm^3 0.001 density

kg/m^3 g/mm^3 0.000 001 density

lb/in^3 g/cc 27.680 5 density

lb/ft^3 lb/in^3 1 728 density

C F 1.8 32 temperature

cm^3

cm

40

0.1

2

0.5

1 000.

0.1

L

 'alum

g/cc

cm

cm

cm^2

g

13.7

6.8

439.4

121.6

2.77

L

L

L

number of data points desired

minimum value for input list

maximum value for input list

height-to-diameter ratio

volume of container

thickness of wall

one of 'alum, 'steel, or 'copper

density of material

diameter of base of cylinder

height of side of cylinder

total surface area

weight of empty cylinder

N

min

max

ratio

vol

thick

material

dens

D

H

surface

weight

Table 20

Input Variable Output Unit Comments

TKSolver Variable Sheet for Example 8 from File EX-08.tkw

St

unit abbreviations in the units column of the variable sheet will invoke conversion of
that variable’s units, provided that a conversion factor exists on the units sheet. For-
matting of variables is also possible by using the format sheet. The use of both units
and format sheets will be demonstrated in an example.

Copyright: Robert L. Norton 2004 INTRODUCTION TO TKSOLVER 25

40

0.1

2

0.001

0.001

 alum

0.5

L

L

L

L

2 768.

0.137

0.068

0.044

0.122

m^3

m

kg/m^3

m

m

m^2

kg

number of data points desired

minimum value for input list 'ratio

maximum value for input list 'ratio

volume of container

thickness of wall

one of 'alum, 'steel, or 'copper

density of material

diameter of base of cylinder

height of side of cylinder

height-to-diameter ratio

total surface area

weight of empty cylinder

N

min

max

vol

thick

material

dens

D

H

ratio

surface

weight

Table 22

Input Variable Output Unit Comments

TKSolver Variable Sheet for Example 9 from File EX-09.tkw

St

E X A M P L E 9

Using Unit Sheets and Format Sheets in TKSolver

Problem Convert the cgs units used in the previous example to the SI system.

Solution See Tables 21, 22, 23, and 24 and the TKSolver file EX-09.tkw.

1 The previous examples were all calculated in the cgs units system. The SI system is
generally preferred for metric units. With the units sheet shown in Table 21 present
in the TK file, the conversions to SI units are accomplished simply by typing the
desired unit symbols from Table 21 into the units column of any variable to be
converted. The result is shown in Table 22. If a unit symbol that does not exist on
the units sheet is typed, it will not convert the variable’s value but will instead put a
question mark in front of its value to indicate that the conversion is not possible with
this unit sheet. If more than one symbol is desired for a given variable, such as cc
and cm^3 (or cm3) for cubic centimeters, this can be accomplished by providing a
unity conversion factor between the equivalent symbols as was done in Table 21.

2 If any variable’s subsheet is opened (by diving on its line in the variable sheet), it
will look like that shown in Table 23 for the variable D. Detailed information about
the variable is recorded here. In this case, the status line indicates D is a list variable.
It has a guess value of 0.02 assigned to it, which will be used whenever the direct
solver cannot resolve the rules and must invoke the iterative solver. Putting a guess
value here eliminates the need to repeatedly put a G in the status column on the
variable sheet when solving. Since this is an output variable at present, the input-
value line is blank and its calculated value appears on the output-value line.

3 Note the two lines labeled Display Unit and Calculation Unit. The first of these
defines the units currently displayed on the variable sheet and the second defines the

26 MACHINE DESIGN - An Integrated Approach

Table 23 TKSolver Variable Subsheet for Example 9 from File EX-09.tkw

Variable: D

Status: L

First Guess: 0.02

Associated List: D

Input Value:

Output Value: 0.137

Numeric Format: d3

Display Unit: m

Calculation Unit: cm

Comment: Diameter of base of cylinder

Table 24 TKSolver Format Sheet for Example 9 from File EX_09.tkw

Format: d3

Comment: 3 decimal places

Numeric Notation: Decimal

Significant Digits: 18

Decimal Places: 3

Padding: Zero

Decimal Point Symbol: .

Digit Grouping Symbol: ,

Zero Representation: 0.000

+/– Notation: – Only

Prefix:

Suffix:

Justification: Right

Left Margin Width: 0

Right Margin Width: 0

unit in which all calculations of this variable are done. It is critical that all vari-
ables in the model have calculation units consistent with one of the standard
units systems. In this case, the calculation unit is cm, because that was the unit label
first typed into the variable sheet in Example 1-2. Whatever unit is first typed on
the variable sheet becomes the calculation unit and will remain so unless
changed on each variable’s subsheet. Any subsequent changes to the unit label
on the variable sheet change only the display unit. This is why it is so important

Copyright: Robert L. Norton 2004 INTRODUCTION TO TKSOLVER 27

to be consistent with one units system when first applying unit labels to a variable
sheet. Failure to do so may lead to erroneous numerical results. You can have any
mix of display units on the variable sheet and this will not affect the correctness of
the results as long as the calculation units for all variables are in a consistent units
system.

4 The Numeric Format line allows specification of a format for this variable provided
that the format code (d3) is defined on the format sheet. Table 24 shows the format
subsheet for this d3 specification. The user can make up any set of format codes and
define their attributes on this sheet. The TK file FORMATS supplied on disk has a
format sheet that defines useful decimal and exponential formats. This file can be
merged into any TK model. A default global format for the entire variable sheet can
also be defined from the SETTINGS menu found under the FORMAT pull-down menu.
The file STUDENT contains both the units sheet from UNITMAST and the format
sheet from FORMATS.

EXERCISES

1 Write a TKSolver program to calculate the cross-sectional properties for all the
shapes shown in Appendix A of reference 1.

2 Convert the program in Problem 1-7 to a set of rule functions, one for each shape in
Appendix A of reference 1. Each function should return the area and second
moments of area for one section shape.

3 Write a TKSolver program to calculate the mass properties for all the solids shown
in Appendix B of reference 1.

4 Convert the program in Problem 1-9 to a set of rule functions, one for each solid in
Appendix B of reference 1. Each function should return the volume and second
moments of mass for one section shape.

REFERENCES

1 Norton, R. L., Machine Design: An Integrated Approach 3ed. Prentice-Hall, 2005

