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while the carousel was turning, you were thrown sideways by the inertial force due to 
the Coriolis acceleration.  You were the slider block in Figure 7‑7 (p. 367), and your slip 
velocity combined with the rotation of the carousel created the Coriolis component.  As 
you walked from a large radius to a smaller one, your tangential velocity had to change 
to match that of the new location of your foot on the spinning carousel.  Any change in 
velocity requires an acceleration to accomplish.  It was the “ghost of Coriolis” that pushed 
you sideways on that carousel.

Another example of the Coriolis component is its effect on weather systems.  Large 
objects that exist in the earth’s lower atmosphere, such as hurricanes, span enough area 
to be subject to significantly different velocities at their northern and southern extremi‑
ties.  The atmosphere turns with the earth.  The earth’s surface tangential velocity due to 
its angular velocity varies from zero at the poles to a maximum of about 1000 mph at the 
equator.  The winds of a storm system are attracted toward the low pressure at its center.  
These winds have a slip velocity with respect to the surface, which in combination with 
the earth’s ω creates a Coriolis component of acceleration on the moving air masses.  
This Coriolis acceleration causes the inrushing air to rotate about the center, or “eye” of 
the storm system.  This rotation will be counterclockwise in the northern hemisphere and 
clockwise in the southern hemisphere.  The movement of the entire storm system from 
south to north also creates a Coriolis component that will tend to deviate the storm’s track 
eastward, though this effect is often overridden by the forces due to other large air masses 
such as high‑pressure systems that can deflect a storm.  These complicated factors make 
it difficult to predict a large storm’s true track.

Note that in the analytical solution presented here, the Coriolis component will be 
accounted for automatically as long as the differentiations are correctly done.  However, 
when doing a graphical acceleration analysis one must be on the alert to recognize the 
presence of this component, calculate it, and include it in the vector diagrams when its 
two constituents Vslip and ω are both nonzero.

The Fourbar Inverted Crank-Slider

The position equations for the fourbar inverted crank‑slider linkage were derived in Sec‑
tion 4.7 (p. 194).  The linkage was shown in Figures 4‑10 (p. 192) and 6‑22 (p. 323) and is 
shown again in Figure 7‑8a (p. 369) on which we also show an input angular acceleration 
α2 applied to link 2.  This α2 can vary with time.  The vector loop equations 4.14 (p. 362) 
are valid for this linkage as well.

All slider linkages will have at least one link whose effective length between joints 
varies as the linkage moves.  In this inversion the length of link 3 between points A and B, 
designated as b, will change as it passes through the slider block on link 4.  In Section 6.7 
(p. 315) we got an expression for velocity, by differentiating equation 4.14b with respect 
to time noting that a, c, d, and θ1 are constant and b, θ3, and θ4 vary with time.

ja e jb e be jc ej j j jω ω ωθ θ θ θ
2 3 4

2 3 3 4 0− − − =� (6.25a)

Differentiating this with respect to time will give an expression for accelerations in this 
inversion of the crank‑slider mechanism.
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