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	 2	 Use	these	angles	and	equations	6.18	(p.	317)	to	find	w3	and	w4	for	the	open	circuit.
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	 3	 Use	the	angular	velocities	and	equations	6.19	(p.	317)	to	find	the	linear	velocities	of	points	A	
and	B.
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	 4	 As	an	exercise,	repeat	the	above	process	to	find	the	velocities	for	the	crossed	circuit	of	the	
linkage.

The Fourbar Crank-Slider

The	position	equations	for	the	fourbar	offset	crank-slider	linkage	(inversion	#1)	were	
derived	in	Section	4.6	(p.	191).		The	linkage	was	shown	in	Figure	4-9	(p.	191)	and	is	
shown	again	in	Figure	6-21a	on	which	we	also	show	an	input	angular	velocity	w2	applied	
to	link	2.		This	w2	can	be	a	time-varying	input	velocity.		The	vector	loop	equation	4.14	is	
repeated	here	for	your	convenience.

R R R R2 3 4 1 0− − − = (4.14a)

ae be ce d ej j j jθ θ θ θ2 3 4 1 0− − − = (4.14b)

Differentiate	equation	4.14b	with	respect	to	time	noting	that	a,	b,	c,	θ1,	and	θ4	are	
constant	but	the	length	of	link	d	varies	with	time	in	this	inversion.

ja e jb e dj jω ωθ θ
2 3

2 3 0− − =� (6.20a)

The	term	 �d 	is	the	linear	velocity	of	the	slider	block.		Equation	6.20a	is	the	velocity	
difference	equation	6.5	(p.	287)	and	can	be	written	in	that	form.
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then: VV VA BA+ (6.20b)

Equation	6.20	is	identical	in	form	to	equations	6.5	and	6.15a	(p.	315).		Note	that	
because	we	arranged	the	position	vector	R3	in	Figures	4-9	(p.	191)	and	6-21	with	its	root	
at	point	B,	directed	from	B	to	A,	its	derivative	represents	the	velocity	difference	of	point	
A	with	respect	to	point	B,	the	opposite	of	that	in	the	previous	fourbar	example.		Compare	
this	also	to	equation	6.15b	noting	that	its	vector	R3	is	directed	from	A	to	B.		Figure	6-21b	
shows	the	vector	diagram	of	the	graphical	solution	to	equation	6.20b.

Substitute	the	Euler	equivalent,	equation	4.4a	(p.	185),	in	equation	6.20a,

ja j jb j dω θ θ ω θ θ2 2 2 3 3 3 0cos sin cos sin+( ) − +( ) − =� (66.21a)

simplify,

a j b j dω θ θ ω θ θ2 2 2 3 3 3 0− +( ) − − +( ) − =sin cos sin cos � (66.21b)

and	separate	into	real	and	imaginary	components.

real	part	(x	component):

− + − =a b dω θ ω θ2 2 3 3 0sin sin � (6.21c)

imaginary	part	(y	component):

a bω θ ω θ2 2 3 3 0cos cos− = (6.21d)
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FIGURE 6-21*

Position vector loop for a fourbar slider-crank linkage showing velocity vectors for a negative (CW) ω2
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*	 Note	the	transmission	an-
gle	m	in	Figure	6-21a	drawn	
between	link	3	and	effective	
link	4	as	previously	defined.		
It	is	also	shown	drawn	be-
tween	vectors	VB	and	VBA	
in	Figure	6-21b,	indicating	
an	alternate	way	to	define	
the	transmission	angle	as	
the acute angle between 
the absolute velocity and 
velocity difference vectors 
at	a	point	such	as	B.		This	
approach	does	not	require	
construction	of	the	slider’s	
effective	link	4	to	determine	
the	transmission	angle.
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These	are	two	simultaneous	equations	in	the	two	unknowns,	 �d 	and	w3.		Equation	
6.21d	(p.	319)	can	be	solved	for	w3	and	substituted	into	6.21c	to	find	 �d .

ω θ
θ

ω3
2

3
2= a

b
cos

cos
(6.22a)

�d a b= − +ω θ ω θ2 2 3 3sin sin (6.22b)

The	absolute	velocity	of	point	A	and	the	velocity	difference	of	point	A	versus	point	
B	are	found	from	equation	6.20:

V

V
A

AB

a j

b j

= − +( )
= − +

ω θ θ

ω θ
2 2 2

3 3

sin cos

sin

(6.23a)

ccosθ3( )
= −

(6.23b)

 (6.23c)V VBA AB

✍EXAMPLE 6-8

Velocity Analysis of a Fourbar Crank-Slider Linkage with the Vector Loop Method.

Problem: Given	 a	 fourbar	 crank-slider	 linkage	 with	 the	 link	 lengths	 L2	 =	 a	 =	 40	 mm,	
L3	=	b	=	120	mm,	offset	=	c	=	–20	mm.	For	θ2	=	60°	and	w2	=	–30	rad/sec,	find	
w3	and	linear	velocities	of	points	A	and	B	for	the	open	circuit.		Use	the	angles	and	
positions	found	for	the	same	linkage	and	its	link	2	position	in	Example	4-2	(p.	193).	

Solution: (See	Figure	6-21,	p.	319,	for	nomenclature.)

	 1	 Example	4-2	found	angle	θ3	=	152.91°	and	slider	position	d	=	126.84	mm	for	the	open	circuit.

	 2	 Using	equation	6.22a	and	the	data	from	step	1,	calculate	the	coupler	angular	velocity	w3.

ω
θ
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2
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2
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cos .
)) = 5 616. ( ) rad/sec a

	 3	 Using	equation	6.22b	and	the	data	from	steps	1	and	2,	calculate	the	slider	velocity	 �d .

�d a b= − + = − −( ) ° +ω θ ω θ2 2 3 3 40 30 60 120 5 6sin sin sin . 116 152 91 1346( ) ° =sin . ( )mm/sec b

	 4	 Using	equation	6.23	and	the	result	from	step	2,	calculate	the	linear	velocities	VA	and	VBA.
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The Fourbar Slider-Crank

The	fourbar slider-crank linkage	has	the	same	geometry	as	the	fourbar crank-slider link-
age	that	was	analyzed	in	the	previous	section.		The	name	change	indicates	that	it	will	be	
driven	with	the	slider	as	input	and	the	crank	as	output.		This	is	sometimes	referred	to	as	a	
“back-driven”	crank-slider.		We	will	use	the	term	slider-crank	to	define	it	as	slider-driven.		
This	is	a	very	commonly	used	linkage	configuration.		Every	internal-combustion,	piston	
engine	has	as	many	of	these	as	it	has	cylinders.		The	vector	loop	is	as	shown	in	Figure	
6-21	and	the	vector	loop	equation	is	identical	to	that	of	the	crank-slider	(equation	4.14a,	
p.	192).		The	derivation	for	θ2	as	a	function	of	slider	position	d	was	done	in	Section	4-7	
(p.	194).		Now	we	want	to	solve	for	w2	as	a	function	of	slider	velocity	 �d 	and	the	known	
link	lengths	and	angles.

We	can	start	with	equations	6.21c	and	d,	which	also	apply	to	this	linkage:

− + − =
−

a b d

a b

ω θ ω θ
ω θ ω
2 2 3 3

2 2 3

0sin sin

cos c

� (6.21c)

oosθ3 0= (6.21d)

Solve	equation	6.21d	for	w3	in	terms	of	w2.

ω
ω θ

θ3
2 2

3
=

a
b

cos

cos
(6.24a)

Substitute	equation	6.24a	for	w3	in	equation	6.21c	and	solve	for	w2.

ω
θ

θ θ θ θ2
3

2 3 2 3

=
−( )

�d

a

cos

cos sin sin cos
(6.24b)

The	circuit	of	the	linkage	depends	on	the	value	of	d	chosen	and	the	angular	velocities	will	
be	for	the	circuit	represented	by	the	values	of	θ2	and	θ3	used	from	equation	4.21	(p.	195).*

✍EXAMPLE 6-9

Velocity Analysis of a Fourbar Slider-Crank Linkage with the Vector Loop Method.

Problem: Given	 a	 fourbar	 slider-crank	 linkage	 with	 the	 link	 lengths	 L2	 =	 a	 =	 40	 mm,

L3	=	b	=	120	mm,	offset	=	c	=	–20	mm.	For	d	=	100	mm	and	 �d 	=	1200	mm/sec,	
find	w2	and	w3	for	both	branches	of	one	circuit	of	the	linkage.		Use	the	angles	found	
for	the	same	linkage	in	Example	4-3	(p.	196).	

Solution: (See	Figure	6-21	for	nomenclature.)

	 1	 Example	4-3	found	angles	θ21
	=	95.798°,	θ31

	=	150.113°	for	branch	1	and	θ22
	=	–118.418°,	

θ32
	=	187.267°	for	branch	2	of	this	linkage.

	 2	 Using	equation	6.24b	and	the	data	from	step	1,	calculate	the	crank	angular	velocity	w21
.

ω
θ

θ θ θ θ
2

3

2 3 2 3
1

1

1 1 1 1

12

=
−( )

=

�d

a

cos

cos sin sin cos

000 150 113

40 95 798 150 113 95

cos .

cos . sin . sin

°
° ° − .. cos .

. ( )
798 150 113

32 023
° °( ) = − rad/sec a

	
*	 The	crank-slider	and	
slider-crank	linkage	
both	have	two	circuits	or	
configurations	in	which	
they	can	be	independently	
assembled,	sometimes	
called	open	and	crossed.			
Because	effective	link	4	is	
always	perpendicular	to	the	
slider	axis,	it	is	parallel	to	
itself	on	both	circuits.		This	
results	in	the	two	circuits	
being	mirror	images	of	one	
another,	mirrored	about	a	
line	through	the	crank	pivot	
and	perpendicular	to	the	
slide	axis.		Thus,	the	choice	
of	value	of	slider	position	
d	in	the	calculation	of	the	
slider-crank	linkage	deter-
mines	which	circuit	is	being	
analyzed.		But,	because	of	
the	change	points	at	TDC	
and	BDC,	the	slider	crank	
has	two	branches	on	each	
circuit	and	the	two	solutions	
obtained	from	equation	4.21	
represent	the	two	branches	
on	the	one	circuit	being	
analyzed.		In	contrast,	the	
crank-slider	has	only	one	
branch	per	circuit	because	
when	the	crank	is	driven,	it	
can	make	a	full	revolution	
and	there	are	no	change	
points	to	separate	branches.		
See	Section	4.13	(p.	208)	
for	a	more	complete	
discussion	of	circuits	and	
branches	in	linkages.
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	 3	 Using	equation	6.24a	(p.	321)	and	data	from	steps	1	and	2,	calculate	coupler	angular	velocity	
w31.

ω
ω θ

θ3
2 2

3
1

1 1

1
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−( ) °a

b

cos
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. cos .
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°
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	 4	 Example	4-3	(p.	196)	found	θ22
	=	–118.418°	and	θ32

	=	187.267°		for	branch	2	of	this	linkage.

	 5	 Using	equation	6.24b	and	the	data	from	step	2,	calculate	the	crank	angular	velocity	w22
.

ω
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θ θ θ θ
2

3

2 3 2 3
2

2

2 2 2 2
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=
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. cos .
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	 6	 Using	equation	6.24a	and	the	data	from	steps	3	and	4,	calculate	coupler	angular	velocity	w32
.

ω
ω θ

θ3
2 2

3
2

2 2

2

40 36 639 118 418

1
= =

( ) − °( )a

b

cos

cos

. cos .

220 187 267
5 859

cos .
. ( )

°( ) =  rad/sec d

The Fourbar Inverted Crank-Slider

The	position	equations	for	the	fourbar	inverted	crank-slider	linkage	were	derived	in	Sec-
tion	4.7	(p.	194).		The	linkage	was	shown	in	Figure	4-10	(p.	192)	and	is	shown	again	in	
Figure	6-22	on	which	we	also	show	an	input	angular	velocity	w2	applied	to	link	2.		This	
w2	can	vary	with	time.		The	vector	loop	equations	4.14	repeated	on	p.	318	are	valid	for	
this	linkage	as	well.

All	slider	linkages	will	have	at	least	one	link	whose	effective	length	between	joints	
varies	as	the	linkage	moves.		In	this	inversion	the	length	of	link	3	between	points	A	and	
B,	designated	as	b,	will	change	as	it	passes	through	the	slider	block	on	link	4.		To	get	an	
expression	for	velocity,	differentiate	equation	4.14b	with	respect	to	time	noting	that	a,	c,	
d,	and	θ1	are	constant	and	b	varies	with	time.

ja e jb e be jc ej j j jω ω ωθ θ θ θ
2 3 4

2 3 3 4 0− − − =� (6.25a)

The	value	of	db/dt	will	be	one	of	the	variables	to	be	solved	for	in	this	case	and	is	
the	 �b 	term	in	the	equation.		Another	variable	will	be	w4,	the	angular	velocity	of	link	4.		
Note,	however,	that	we	also	have	an	unknown	in	w3,	the	angular	velocity	of	link	3.		This	
is	a	total	of	three	unknowns.		Equation	6.25a	can	only	be	solved	for	two	unknowns.		Thus	
we	require	another	equation	to	solve	the	system.		There	is	a	fixed	relationship	between	
angles	θ3	and	θ4,	shown	as	γ 	in	Figure	6-22	and	defined	in	equation	4.22,	repeated	here:

θ θ γ3 4 4 22= + ( . )

Differentiate	it	with	respect	to	time	to	obtain:

ω ω3 4= (6.25b)
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We	wish	to	solve	equation	6.25a	to	get	expressions	in	this	form:

ω ω θ θ θ ω3 4 2 3 4 2
6 26

= = ( )

= =

f a b c d

db
dt

b g

, , , , , , ,
( . )

� aa b c d, , , , , , ,θ θ θ ω2 3 4 2( )
Substitution	of	the	Euler	identity	(equation	4.4a,	p.	185)	into	equation	6.25a	yields:

ja j jb j

b

ω θ θ ω θ θ2 2 2 3 3 3cos sin cos sin

cos

+( ) − +( )
− � θθ θ ω θ θ3 3 4 4 4 0+( ) − +( ) =j jc jsin cos sin (6.27a)

Multiply	by	the	operator	j	and	substitute	w4	for	w3	from	equation	6.25b:

a j b j

b

ω θ θ ω θ θ2 2 2 4 3 3− +( ) − − +( )
−

sin cos sin cos

cos� θθ θ ω θ θ3 3 4 4 4 0+( ) − − +( ) =j c jsin sin cos (6.27b)

We	can	now	separate	this	vector	equation	into	its	two	components	by	collecting	all	
real	and	all	imaginary	terms	separately:

real	part	(x	component):

− + − + =a b b cω θ ω θ θ ω θ2 2 4 3 3 4 4 0sin sin cos sin� (6.28a))

imaginary	part	(y component):

a b b cω θ ω θ θ ω θ2 2 4 3 3 4 4 0cos cos sin cos− − − =� (6.28b)

Collect	terms	and	rearrange	equations	6.28	to	isolate	one	unknown	on	the	left	side.

�

�

b a b ccos sin sin sinθ ω θ ω θ θ3 2 2 4 3 4= − + +( ) (6.29a)

bb a b csin cos cos cosθ ω θ ω θ θ3 2 2 4 3 4= − +( ) (6.29b)
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FIGURE 6-22

Velocity analysis of inversion #3 of the slider-crank fourbar linkage
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Either	equation	can	be	solved	for	 �b 	and	the	result	substituted	in	the	other.		Solving	
equation	6.29a	(p.	323):

�b
a b c

=
− + +( )ω θ ω θ θ

θ
2 2 4 3 4

3

sin sin sin

cos
(6.30a)

Substitute	in	equation	6.29b	(p.	323)	and	simplify:

ω
ω θ θ

θ θ4
2 2 3

4 3

=
−( )

+ −( )
a

b c

cos

cos
(6.30b)

Equation	6.30a	provides	the	velocity of slip	at	point	B.		Equation	6.30b	gives	the	
angular velocity	of	link	4.		Note	that	we	can	substitute	 − −γ θ θ= 4 3 	from	equation	4.18	
(for	an	open	linkage)	into	equation	6.30b	to	further	simplify	it.		Note	that	cos(–γ)	=	cos(γ).

ω
ω θ θ

γ4
2 2 3=

−( )
+

a

b c

cos

cos
(6.30c)

The	velocity of slip	from	equation	6.30a	is	always	directed	along	the	axis of slip	as	
shown	in	Figure	6-22	(p.	323).		There	is	also	a	component	orthogonal	to	the	axis	of	slip	
called	the	velocity of transmission.		This	lies	along	the	axis of transmission	which	is	
the	only	line	along	which	any	useful	work	can	be	transmitted	across	the	sliding	joint.		All	
energy	associated	with	motion	along	the	slip	axis	is	converted	to	heat	and	lost.

The	absolute	linear	velocity	of	point	A	is	found	from	equation	6.23a	(p.	320).		We	
can	find	the	absolute	velocity	of	point	B	on	link	4	since	w4	is	now	known.		From	equation	
6.15b	(p.	315):

VB
jjc e c j

4
4

4 4 4 4= = − +( )ω ω θ θθ sin cos (6.31a)

The	velocity	of	transmission	is	the	component	of	Vb4	normal	to	the	axis	of	slip.		The	
absolute	velocity	of	point	B	on	link	3	is	found	from	equation	6.5	(p.	287)	as

V V V V VB B B B slip3 4 34 4 34
= + = + (6.31b)

6.8 VELOCITY ANALYSIS OF THE GEARED FIVEBAR LINKAGE

The	position	loop	equation	for	the	geared	fivebar	mechanism	was	derived	in	Section	4.8	
(p.	197)	and	is	repeated	here.		See	Figure	P6-4	(p.	331)	for	notation.

ae be ce d e f ej j j j jθ θ θ θ θ2 3 4 5 1 0+ − − − = (4.27b)

Differentiate	this	with	respect	to	time	to	get	an	expression	for	velocity.

a je b je c je d jej j j jω ω ω ωθ θ θ θ
2 3 4 5

2 3 4 5 0+ − − = (6.32a))

Substitute	the	Euler	equivalents:

a j j b j j

c j

ω ω

ω
2 2 2 3 3 3

4

cos sin cos sin

c

θ θ θ θ+( )+ +( )
− oos sin cos sinθ θ θ θ4 4 5 5 5 0+( ) − +( ) =j d j jω (6.32b)


