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	 2	 Use these angles and equations 6.18 (p. 317) to find w3 and w4 for the open circuit.
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	 3	 Use the angular velocities and equations 6.19 (p. 317) to find the linear velocities of points A 
and B.

VA a j

j

= − +( )
= ( ) − ° + °

ω θ θ2 2 2

40 25 40 40

sin cos

sin cos(( ) = − +
= − =

642 79 766 04

642 79 766 04

. .

. ; . ;

j

A Ax y
V V VAA Amag ang

b= = °1000 130 mm/sec; ( )V

VBA b j= − +( )
= −( ) −

ω θ θ3 3 3

120 4 121 20 29

sin cos

. sin . 88 20 298 171 55 463 80

171 55

° + °( ) = −
=

j j

BA Bx

. . .

. ;V V AA BA BAy mag ang
= − = = −463 80 494 51 69. ; . ;V V mm/sec .. ( )70° c

VB c j

j

= − +( )
= ( ) − +

ω θ θ4 4 4

80 6 998 57 325

sin cos

. sin . ccos . . .

. ;

57 325 471 242 302 243

471 242

( ) = − +
= −

j

Bx
V VV V VB B By mag ang

= = =302 243 599 84 147. ; . ; . mm/sec 333° ( )d

	 4	 As an exercise, repeat the above process to find the velocities for the crossed circuit of the 
linkage.

The Fourbar Crank-Slider

The position equations for the fourbar offset crank-slider linkage (inversion #1) were 
derived in Section 4.6 (p. 191).  The linkage was shown in Figure 4-9 (p. 191) and is 
shown again in Figure 6‑21a on which we also show an input angular velocity ω2 applied 
to link 2.  This ω2 can be a time-varying input velocity.  The vector loop equation 4.14 is 
repeated here for your convenience.

R R R R2 3 4 1 0− − − = (4.14a)

ae be ce d ej j j jθ θ θ θ2 3 4 1 0− − − = (4.14b)

Differentiate equation 4.14b with respect to time noting that a, b, c, θ1, and θ4 are 
constant but the length of link d varies with time in this inversion.

ja e jb e dj jω ωθ θ
2 3

2 3 0− − =� (6.20a)

The term �d  is the linear velocity of the slider block.  Equation 6.20a is the velocity 
difference equation 6.5 (p. 287) and can be written in that form.
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Equation 6.20 is identical in form to equations 6.5 and 6.15a (p. 315).  Note that 
because we arranged the position vector R3 in Figures 4-9 (p. 191) and 6‑21 with its root 
at point B, directed from B to A, its derivative represents the velocity difference of point 
A with respect to point B, the opposite of that in the previous fourbar example.  Compare 
this also to equation 6.15b noting that its vector R3 is directed from A to B.  Figure 6‑21b 
shows the vector diagram of the graphical solution to equation 6.20b.

Substitute the Euler equivalent, equation 4.4a (p. 185), in equation 6.20a,

ja j jb j dω θ θ ω θ θ2 2 2 3 3 3 0cos sin cos sin+( ) − +( ) − =� (66.21a)

simplify,

a j b j dω θ θ ω θ θ2 2 2 3 3 3 0− +( ) − − +( ) − =sin cos sin cos � (66.21b)

and separate into real and imaginary components.

real part (x component):

− + − =a b dω θ ω θ2 2 3 3 0sin sin � (6.21c)

imaginary part (y component):

a bω θ ω θ2 2 3 3 0cos cos− = (6.21d)
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FIGURE 6-21*

Position vector loop for a fourbar slider-crank linkage showing velocity vectors for a negative (CW) ω2

(b)

O2

VA

VB

VBA

A

X

Y

d

b

a
c

x

y

4B

–

+

VA

VB

VBA

	
*  Note the transmission an-
gle m in Figure 6-21a drawn 
between link 3 and effective 
link 4 as previously defined.  
It is also shown drawn be-
tween vectors VB and VBA 
in Figure 6-21b, indicating 
an alternate way to define 
the transmission angle as 
the acute angle between 
the absolute velocity and 
velocity difference vectors 
at a point such as B.  This 
approach does not require 
construction of the slider’s 
effective link 4 to determine 
the transmission angle.
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These are two simultaneous equations in the two unknowns, �d  and ω3.  Equation 
6.21d (p. 319) can be solved for ω3 and substituted into 6.21c to find �d .

ω θ
θ

ω3
2

3
2= a

b
cos

cos
(6.22a)

�d a b= − +ω θ ω θ2 2 3 3sin sin (6.22b)

The absolute velocity of point A and the velocity difference of point A versus point 
B are found from equation 6.20:
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ω θ
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(6.23b)

 (6.23c)V VBA AB

✍EXAMPLE 6-8

Velocity Analysis of a Fourbar Crank-Slider Linkage with the Vector Loop Method.

Problem:	 Given a fourbar crank-slider linkage with the link lengths L2 = a = 40 mm, 
L3 = b = 120 mm, offset = c = –20 mm. For q2 = 60° and w2 = –30 rad/sec, find 
w3 and linear velocities of points A and B for the open circuit.  Use the angles and 
positions found for the same linkage and its link 2 position in Example 4-2 (p. 193). 

Solution:	 (See Figure 6-21, p. 319, for nomenclature.)

	 1	 Example 4-2 found angle q3 = 152.91° and slider position d = 126.84 mm for the open circuit.

	 2	 Using equation 6.22a and the data from step 1, calculate the coupler angular velocity w3.
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	 3	 Using equation 6.22b and the data from steps 1 and 2, calculate the slider velocity �d .

�d a b= − + = − −( ) ° +ω θ ω θ2 2 3 3 40 30 60 120 5 6sin sin sin . 116 152 91 1346( ) ° =sin . ( )mm/sec b

	 4	 Using equation 6.23 and the result from step 2, calculate the linear velocities VA and VBA.
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The Fourbar Slider-Crank

The fourbar slider-crank linkage has the same geometry as the fourbar crank-slider link-
age that was analyzed in the previous section.  The name change indicates that it will be 
driven with the slider as input and the crank as output.  This is sometimes referred to as a 
“back-driven” crank-slider.  We will use the term slider-crank to define it as slider-driven.  
This is a very commonly used linkage configuration.  Every internal-combustion, piston 
engine has as many of these as it has cylinders.  The vector loop is as shown in Figure 
6-21 and the vector loop equation is identical to that of the crank-slider (equation 4.14a, 
p. 192).  The derivation for q2 as a function of slider position d was done in Section 4-7 
(p. 194).  Now we want to solve for w2 as a function of slider velocity �d  and the known 
link lengths and angles.

We can start with equations 6.21c and d, which also apply to this linkage:

− + − =
−

a b d

a b

ω θ ω θ
ω θ ω
2 2 3 3

2 2 3

0sin sin

cos c

� (6.21c)

oosθ3 0= (6.21d)

Solve equation 6.21d for w3 in terms of w2.

ω
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θ3
2 2

3
=

a
b

cos

cos
(6.24a)

Substitute equation 6.24a for w3 in equation 6.21c and solve for w2.

ω
θ

θ θ θ θ2
3

2 3 2 3

=
−( )
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a

cos

cos sin sin cos
(6.24b)

The circuit of the linkage depends on the value of d chosen and the angular velocities will 
be for the circuit represented by the values of q2 and q3 used from equation 4.21 (p. 195).*

✍EXAMPLE 6-9

Velocity Analysis of a Fourbar Slider-Crank Linkage with the Vector Loop Method.

Problem:	 Given a fourbar slider-crank linkage with the link lengths L2 = a = 40 mm,

L3 = b = 120 mm, offset = c = –20 mm. For d = 100 mm and �d  = 1200 mm/sec, 
find w2 and w3 for both branches of one circuit of the linkage.  Use the angles found 
for the same linkage in Example 4-3 (p. 196). 

Solution:	 (See Figure 6-21 for nomenclature.)

	 1	 Example 4-3 found angles q21
 = 95.798°, q31

 = 150.113° for branch 1 and q22
 = –118.418°, 

q32
 = 187.267° for branch 2 of this linkage.

	 2	 Using equation 6.24b and the data from step 1, calculate the crank angular velocity w21
.

ω
θ

θ θ θ θ
2

3

2 3 2 3
1

1

1 1 1 1

12

=
−( )

=

�d

a

cos

cos sin sin cos

000 150 113
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cos .

cos . sin . sin

°
° ° − .. cos .

. ( )
798 150 113

32 023
° °( ) = − rad/sec a

	
*  The crank-slider and 
slider-crank linkage 
both have two circuits or 
configurations in which 
they can be independently 
assembled, sometimes 
called open and crossed.   
Because effective link 4 is 
always perpendicular to the 
slider axis, it is parallel to 
itself on both circuits.  This 
results in the two circuits 
being mirror images of one 
another, mirrored about a 
line through the crank pivot 
and perpendicular to the 
slide axis.  Thus, the choice 
of value of slider position 
d in the calculation of the 
slider-crank linkage deter-
mines which circuit is being 
analyzed.  But, because of 
the change points at TDC 
and BDC, the slider crank 
has two branches on each 
circuit and the two solutions 
obtained from equation 4.21 
represent the two branches 
on the one circuit being 
analyzed.  In contrast, the 
crank-slider has only one 
branch per circuit because 
when the crank is driven, it 
can make a full revolution 
and there are no change 
points to separate branches.  
See Section 4.13 (p. 208) 
for a more complete 
discussion of circuits and 
branches in linkages.
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	 3	 Using equation 6.24a (p. 321) and data from steps 1 and 2, calculate coupler angular velocity 
w31.

ω
ω θ
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2 2
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	 4	 Example 4-3 (p. 196) found q22
 = –118.418° and q32

 = 187.267°  for branch 2 of this linkage.

	 5	 Using equation 6.24b and the data from step 2, calculate the crank angular velocity w22
.
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	 6	 Using equation 6.24a and the data from steps 3 and 4, calculate coupler angular velocity w32
.

ω
ω θ
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3
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2
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1
= =

( ) − °( )a
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The Fourbar Inverted Crank-Slider

The position equations for the fourbar inverted crank-slider linkage were derived in Sec-
tion 4.7 (p. 194).  The linkage was shown in Figure 4-10 (p. 192) and is shown again in 
Figure 6‑22 on which we also show an input angular velocity ω2 applied to link 2.  This 
ω2 can vary with time.  The vector loop equations 4.14 repeated on p. 318 are valid for 
this linkage as well.

All slider linkages will have at least one link whose effective length between joints 
varies as the linkage moves.  In this inversion the length of link 3 between points A and 
B, designated as b, will change as it passes through the slider block on link 4.  To get an 
expression for velocity, differentiate equation 4.14b with respect to time noting that a, c, 
d, and θ1 are constant and b varies with time.

ja e jb e be jc ej j j jω ω ωθ θ θ θ
2 3 4

2 3 3 4 0− − − =� (6.25a)

The value of db/dt will be one of the variables to be solved for in this case and is 
the �b  term in the equation.  Another variable will be ω4, the angular velocity of link 4.  
Note, however, that we also have an unknown in ω3, the angular velocity of link 3.  This 
is a total of three unknowns.  Equation 6.25a can only be solved for two unknowns.  Thus 
we require another equation to solve the system.  There is a fixed relationship between 
angles θ3 and θ4, shown as γ  in Figure 6‑22 and defined in equation 4.22, repeated here:

θ θ γ3 4 4 22= + ( . )

Differentiate it with respect to time to obtain:

ω ω3 4= (6.25b)
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We wish to solve equation 6.25a to get expressions in this form:

ω ω θ θ θ ω3 4 2 3 4 2
6 26

= = ( )

= =

f a b c d

db
dt

b g

, , , , , , ,
( . )

� aa b c d, , , , , , ,θ θ θ ω2 3 4 2( )
Substitution of the Euler identity (equation 4.4a, p. 185) into equation 6.25a yields:

ja j jb j

b

ω θ θ ω θ θ2 2 2 3 3 3cos sin cos sin

cos

+( ) − +( )
− � θθ θ ω θ θ3 3 4 4 4 0+( ) − +( ) =j jc jsin cos sin (6.27a)

Multiply by the operator j and substitute ω4 for ω3 from equation 6.25b:

a j b j

b

ω θ θ ω θ θ2 2 2 4 3 3− +( ) − − +( )
−

sin cos sin cos

cos� θθ θ ω θ θ3 3 4 4 4 0+( ) − − +( ) =j c jsin sin cos (6.27b)

We can now separate this vector equation into its two components by collecting all 
real and all imaginary terms separately:

real part (x component):

− + − + =a b b cω θ ω θ θ ω θ2 2 4 3 3 4 4 0sin sin cos sin� (6.28a))

imaginary part (y component):

a b b cω θ ω θ θ ω θ2 2 4 3 3 4 4 0cos cos sin cos− − − =� (6.28b)

Collect terms and rearrange equations 6.28 to isolate one unknown on the left side.

�

�

b a b ccos sin sin sinθ ω θ ω θ θ3 2 2 4 3 4= − + +( ) (6.29a)

bb a b csin cos cos cosθ ω θ ω θ θ3 2 2 4 3 4= − +( ) (6.29b)
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FIGURE 6-22

Velocity analysis of inversion #3 of the slider-crank fourbar linkage
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Either equation can be solved for �b  and the result substituted in the other.  Solving 
equation 6.29a (p. 323):

�b
a b c

=
− + +( )ω θ ω θ θ

θ
2 2 4 3 4

3

sin sin sin

cos
(6.30a)

Substitute in equation 6.29b (p. 323) and simplify:

ω
ω θ θ

θ θ4
2 2 3

4 3

=
−( )

+ −( )
a

b c

cos

cos
(6.30b)

Equation 6.30a provides the velocity of slip at point B.  Equation 6.30b gives the 
angular velocity of link 4.  Note that we can substitute − −γ θ θ= 4 3  from equation 4.18 
(for an open linkage) into equation 6.30b to further simplify it.  Note that cos(–γ) = cos(γ).

ω
ω θ θ

γ4
2 2 3=

−( )
+

a

b c

cos

cos
(6.30c)

The velocity of slip from equation 6.30a is always directed along the axis of slip as 
shown in Figure 6‑22 (p. 323).  There is also a component orthogonal to the axis of slip 
called the velocity of transmission.  This lies along the axis of transmission which is 
the only line along which any useful work can be transmitted across the sliding joint.  All 
energy associated with motion along the slip axis is converted to heat and lost.

The absolute linear velocity of point A is found from equation 6.23a (p. 320).  We 
can find the absolute velocity of point B on link 4 since ω4 is now known.  From equation 
6.15b (p. 315):

VB
jjc e c j

4
4

4 4 4 4= = − +( )ω ω θ θθ sin cos (6.31a)

The velocity of transmission is the component of Vb4 normal to the axis of slip.  The 
absolute velocity of point B on link 3 is found from equation 6.5 (p. 287) as

V V V V VB B B B slip3 4 34 4 34
= + = + (6.31b)

6.8	 VELOCITY ANALYSIS OF THE GEARED FIVEBAR LINKAGE

The position loop equation for the geared fivebar mechanism was derived in Section 4.8 
(p. 197) and is repeated here.  See Figure P6-4 (p. 331) for notation.

ae be ce d e f ej j j j jθ θ θ θ θ2 3 4 5 1 0+ − − − = (4.27b)

Differentiate this with respect to time to get an expression for velocity.

a je b je c je d jej j j jω ω ω ωθ θ θ θ
2 3 4 5

2 3 4 5 0+ − − = (6.32a))

Substitute the Euler equivalents:

a j j b j j

c j

ω ω

ω
2 2 2 3 3 3

4

cos sin cos sin

c

θ θ θ θ+( )+ +( )
− oos sin cos sinθ θ θ θ4 4 5 5 5 0+( ) − +( ) =j d j jω (6.32b)


