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Equations 4.14 and 4.15 (pp. 192–193) apply to this inversion as well.  Note that 
the absolute position of point B is defined by vector RB which varies in both magnitude 
and direction as the linkage moves.  We choose to represent RB as the vector difference 
R2 – R3 in order to use the actual links as the position vectors in the loop equation.

All slider linkages will have at least one link whose effective length between joints 
will vary as the linkage moves.  In this example the length of link 3 between points A and 
B, designated as b, will change as it passes through the slider block on link 4.  Thus the 
value of b will be one of the variables to be solved for in this inversion.  Another variable 
will be θ4, the angle of link 4.  Note however, that we also have an unknown in θ3, the 
angle of link 3.  This is a total of three unknowns.  Equations 4.15 can only be solved for 
two unknowns.  Thus we require another equation to solve the system.  There is a fixed 
relationship between angles θ3 and θ4, shown as γ  in Figure 4‑13, which gives the equa‑
tions for the open and crossed configurations of the linkage, respectively:

θ = θ + γ θ = θ + γ − πopen configuration: ; crossed configuration: (4.22)3 4 3 4

Repeating equations 4.15 and renumbering them for the reader’s convenience:
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These have only two unknowns and can be solved simultaneously for θ4 and b.  Equa‑
tion 4.23b can be solved for link length b and substituted into equation 4.23a.
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FIGURE 4-13

Inversion #3 of the slider-crank fourbar linkage
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Substitute equation 4.22 and after some algebraic manipulation, equation 4.24 can 
be reduced to:
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Note that the factors P, Q, R are constant for any input value of θ2.  To solve this for 
θ4, it is convenient to substitute the tangent half angle identities (equation 4.9, p. 188) for 
the sin θ4 and cos θ4 terms.  This will result in a quadratic equation in tan (θ4 / 2) which 
can be solved for the two values of θ4.

P Q

2
2

1
2

1
2

4

2 4

2 4tan

tan

tan
θ

θ

θ





+ 





+
− 





+ 





+ =
1

2

0
2 4tan

θ
R (4.26a)

This reduces to:
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and the solution is:
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As was the case with the previous examples, this also has a crossed and an open 
solution represented by the plus and minus signs on the radical.  Note that we must also 
calculate the values of link length b for each θ4 by using equation 4.24a.  he coupler angle 
θ3 is found from equations 4.22 for the open or crossed solution.

4.9	 LINKAGES OF MORE THAN FOUR BARS

With some exceptions,* the same approach as shown here for the fourbar linkage can be 
used for any number of links in a closed-loop configuration.   More complicated linkages 
may have multiple loops which will lead to more equations to be solved simultaneously 
and may require an iterative solution.  Alternatively, Wampler [10] presents a new, general, 
noniterative method for the analysis of planar mechanisms containing any number of rigid 
links connected by rotational and/or translational joints.

	

*  Waldron and Sreeniva‑
san[1] report that the 
common solution methods 
for position analysis are not 
general, i.e., are not extend‑
able to n-link mechanisms.  
Conventional position 
analysis methods, such as 
those used here, rely on the 
presence of a fourbar loop 
in the mechanism that can 
be solved first, followed 
by a decomposition of 
the remaining links into 
a series of dyads.  Not all 
mechanisms contain fourbar 
loops. (One eightbar, 
1-DOF linkage contains 
no fourbar loops—see the 
16th isomer at lower right 
in Figure 2-11d on p. 50).  
Even if there is a fourbar 
loop, its pivots may not be 
grounded, requiring that the 
linkage be inverted to start 
the solution.  Also, if the 
driving joint is not in the 
fourbar loop, then interpola‑
tion is needed to solve for 
link positions.  


